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Abstract – Existing distributed systems vary from those which merely provide

interconnection of autonomous systems to those which provide a complete language

environment for writing distributed programs. The former tend to support flexibility and

provide ready access to system facilities, but suffer by being complex to use. Language

environments are simpler to use and can provide safer environments by performing checks, but

tend to be aimed at constructing distributed programs rather than systems, and tend to hide and

prevent access to many system level facilities. Both tend to be weak in their support for the

configuration and modification of distributed applications. 

The Conic environment provides a language-based approach to the building of

distributed systems which combines the simplicity and safety of a language approach with the

flexibility and accessibility of an operating systems approach.  It provides a comprehensive set

of tools for program compilation, configuration, debugging and execution in a distributed

environment. The environment is particularly strong in its configuration facilities. A separate

configuration language is employed to specify the configuration of software components into

logical nodes. This provides a concise configuration description and facilitates  the re-use of

program components in different configurations. Applications are constructed as sets of one or

more interconnected logical nodes. Arbitrary, incremental change is supported by dynamic

configuration, the capability to dynamically create, interconnect and control logical nodes.

In addition, the system provides user transparent datatype transformation between

heterogeneous processors. Applications may be run on a mixed set of interconnected

computers running the Unix  operating system and on bare target machines with no resident

operating system. 

This paper sets out the basic principles adopted in the construction of the Conic

environment and, in particular, describes the configuration and run-time facilities provided.

Examples are used to illustrate the approach. 

Index Terms – Configuration language, configuration management, dynamic

configuration, distributed systems, networked systems, programming language,  operating

system,  run-time system. 
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1. INTRODUCTION 

While the advantages of the use of distributed systems are well known and widely

acclaimed, there is still little agreement as to how to provide the necessary support for

modularity, concurrency, synchronisation, communication and configuration. The approaches

taken vary from those attempts to merely adapt and interconnect existing autonomous systems

to those which provide a complete language environment in which to write distributed

programs.   

For instance, many  Operating Systems (OS) provide direct access to communication

facilities. Examples of this approach include the SNA LU 6.2 interface in IBM operating

systems [10], the DECNET NSP interface in DEC operating systems [34], and the socket

interface to TCP/IP protocols in most Unix systems. A distributed application is

implemented as a collection of sequential programs which communicate using the relevant

networking system calls.  However, the communication interfaces are complex and difficult to

use. The naming conventions and interprocess communication primitives are usually non-

uniform, using different conventions and providing different semantics for internal and remote

interactions. Little support is provided by the OS environment for initial configuration of a set

of program components into an executable distributed application, nor for subsequent

monitoring and control of the configuration. Similarly, little or no interface checking is

supported to ensure compatibility of interconnected programs. Applications programmed in this 

way are thus difficult to construct, debug and maintain. The main advantage of the OS

approach is that it is flexible, in that a distributed application is composed of a (potentially)

changing set of interconnected programs. 

On the other hand, distributed programming languages [30,9,1,3] reduce the complexity

of constructing distributed applications by providing modularity, concurrency, synchronisation

and communication facilities integrated into a single language framework. They  provide

support for compile, link and run-time checks to ensure operation or message compatibility

between components. In addition they provide consistent naming, communication and

synchronisation for both local and remote interactions. Thus language environments are

generally simpler to use and can provide safer environments. However,  configuration

facilities are often part of the programming language which results in a single large distributable

program rather than the OS view of a system as a changing set of interconnected programs. We

believe that this makes unpredicted modification and the provision of redundancy more

difficult.  In many applications, particularly real-time ones, it is useful to have a set of

components which form a unit for configuration or failure recovery, and which can be

separately reconfigured. 

Conic provides a language-based approach to the building of distributed applications

which combines the simplicity and safety of a language approach with the flexibility of an
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operating systems approach. Flexible configuration, modularity and reuse of software

components is facilitated by separation of the language for programming individual task

modules  ("programming in the small") from the language for configuring programs from

predefined modules ("programming in the large"). The separate configuration language

provides a concise configuration description and hierarchical composition, and is employed to

specify the configuration of software modules (processes)  into logical nodes. A logical

node is the system configuration unit. It is a set of tasks which execute concurrently within a

shared address space. Systems are constructed as sets of one or more interconnected logical

nodes.  

Large distributed applications  are subject to both evolutionary and operational changes.

Evolutionary changes occur through the need to incorporate new functionality and technology

in a manner which is difficult to predict. Operational changes result from the need to

redimension to cater for growth and to reorganise to recover from failures. It is impractical and

uneconomic to take out of service an entire distributed system simply to modify part of it.

Conic caters for these requirements by language and run-time support for dynamic

configuration [14] of logical nodes. This permits on-line modifications to a running Conic

system using the configuration language.  

Conic was designed for the support of distributed embedded systems, but in practice has

been used to construct a wide range of applications from general distributed algorithms to

system support utilities and services. The flexibility objectives of Conic are similar to those of

LYNX [26] in providing language support for loosely coupled distributed programs; however

we have not concentrated on the client-server paradigm of system construction, but have

provided support for general peer (mesh) interactions. The example in section 3 illustrates this.  

A. Design Principles 

As described above, we believe that distributed systems require a combination of

language supported convenience and safety with operating system flexibility. The flexible

configuration facilities described above are essential, particularly in an experimental

environment. Other principles which we believe to be important are support for mixed host and

target  environments, uniformity, simplicity and efficiency, and portability. These are briefly

discussed below. 

A host environment provides many useful services and utilities. Targets are useful in

providing the distributed processing power and real-time response required for interaction with

devices. In order to exploit both, distributed applications should be capable of running in

mixed host and target environments. For instance, applications in the areas of factory

automation, process control and telecommunications require major parts of the system to

exhibit real-time response, but also require access to file servers, graphic displays, logging and

printing services. A Conic application, consisting of one or more interconnected logical nodes,
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can be configured to run in such a mixed host-target environment. Fig. 1 depicts a typical

execution environment. A Conic logical node may be executed on a host as a Unix process

or directly on a target. Communication between tasks within a logical node and between logical

nodes is supported uniformly by message passing. This provides a simple communication

facility between local and remote tasks which hides the complexity of the network interface. On

a target computer, Conic executes with no resident operating system other than the Conic

executive, but  can still access the services and facilities of the general purpose host operating

system. 
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 Executive
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 Executive
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Application 1

Application 2
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Fig. 1.   Distributed applications in a Conic environment 

The Conic system and its environment is "open" in that it provides easy access to all its

facilities [24] by use of a common message passing interface structure for all component
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interaction (see section 2). Both distributed applications and the Conic support system itself are

constructed using the same tools and techniques. With the exception of less than 100 lines of

assembly code in the kernel, all the software for the Conic environment is implemented in

Conic. This uniformity permits users to tailor or extend the system facilities to suit their

particular requirements,  although this is not normally performed by naive applications

programmers. The ability to easily modify the system is an essential attribute for an

experimental environment.  It  also facilitates configuration of the support system itself to suit

particular hardware or application environments.  

The underlying Conic support system has been designed to be simple and efficient.

Wherever a design decision has occurred, it has been our experience that it is better to provide

constructs which incur no hidden costs. In an open system such as ours, it is more important to 

provide extensible facilities which permit more complex facilities to be implemented 'on top'

where required, rather than forcing users to pay the cost of powerful primitives even when they 

are not used. Furthermore, configuration of the system permits selection of those run-time

facilities actually required. 

The Conic development facilities and the run-time support was designed to be flexible

and portable in the sense of software allocation and in handling computer heterogeneity. This

portability across a variety of both host and target processors reflects both academic and

industrial requirements. Allocation flexibility allows software to be developed and tested on a

single machine and then distributed across mixed host and target computers.  This requires that

local and remote communication have the same semantics, so that reallocation of software does

not change the logical behaviour. The programming language approach of Conic has allowed

the automation of the data transformations required for communication between non-

homogeneous computers.  This is similar to the approach of typed remote procedure calls as in

Courier [36] and contrasts with the need for explicit calls on subroutine libraries (e.g. Sun

XDR [31]) in a typical OS. 

The rest of this paper concentrates on the Conic support environment. In section 2 we

briefly outline the important features of the Conic programming and configuration  languages.

Section 3 describes how distributed applications are constructed using the dynamic

configuration tools. The run-time support environment (node executive, configuration manager

and server) is described in section 4. Finally, we discuss experience in using Conic and present

some conclusions. 

II.  THE CONIC PROGRAMMING AND CONFIGURATION LANGUAGES.  

Conic provides a language based approach to building distributed systems which clearly

distinguishes between the programming of individual software components and the building of

systems from these components.  In this section we give an overview of these languages. 
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A.  Conic Module Programming Language 

The language for programming individual software components (modules) is based on

Pascal which has been extended to support modularity and message passing primitives [13].

The language allows the definition of a task module type which  is a self-contained, sequential

task (process).   At configuration time,  module instances are created from these types.  Module 

instances exchange messages and perform a particular function such as controlling a device or

managing a resource.  

The Module interface is defined in terms of strongly typed ports which specify all the

information required to use the module.  An exitport denotes the interface at which message

transactions can be initiated and provide a local name and type holder in place of the source

name and type.  An entryport denotes the interface at which message transactions can be

received and provides a local name and typeholder in place of the source name and type.  The

binding of an exitport to an entryport is part of the configuration specification and can only be

performed within the programming language by sending messages to the configuration

management facilities (described later). 

The Conic task module thus provides  configuration independence in that all references are 

to local objects and there is no direct naming of other modules  or communication entities.  This 

means there is no configuration information embedded in the programming language and so no

recompilation is needed for configuration changes ie. Conic modules are reuseable in many

different situations. 

The programming language supports communication primitives to send a message to an

exitport or receive one from an entryport. The message types must correspond to the port

types.  There are two classes of message transaction: 

i)   A notify transaction provides unidirectional, potentially multi-destination message

passing.  The send operation is asynchronous and does not block the sender, although the

receiver may block waiting for a message. 

ii)  A  Request Reply provides bidirectional synchronous message passing.  The sender is

blocked until the reply is received from the responder. A fail clause allows the sender to

withdraw from the transaction on expiry of a timeout or if the transaction fails.  The

receiver may also block waiting for a request.  As an alternative to replying, the receiver of

a message can  forward it  via an exitport to another task. 

Definition Units are used to define constants, types, functions and procedures which

are common between different modules within a system.  These can be compiled separately and

imported into both task modules and other definition units. Definition units may also define
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data and initialisation code and so provides a facility similar to Modula-2 [35] modules and

Ada    [33] packages. 

The following example of a task module (Fig. 2.1) which acts as scaling filter for its

inputs gives the "flavour" of Conic programs. 

task module  scale(scalefactor:integer); 
entryport 

control: boolean; 
input:   real  reply signaltype; 

exitport 
output: real  reply signaltype; 

var 
value: real; 
active: boolean; 

begin 
active := false; 
loop 

select 
receive active from control  

or 
when active 
receive  value  from input  reply  signal => 

send value/scalefactor  to output wait signal; 
end 

end 
end. 

Fig. 2.1 - Task module 

The scale task of Fig. 2.1 receives real values on its entryport input and sends scaled

values to the exitport output  when the boolean variable active has the value true.  The value of

active is set by boolean values received from the entryport control.  Input and output are

request-reply ports, where the reply type signaltype  is a base type of zero length. The variable

signal of type signaltype is automatically declared by the compiler. The example shows the

abbreviated form of the receive-reply statement since no statements are executed between

receiving the request and replying. Receive and reply may be separated by processing, in

which case the reply in this example would become reply signal to output.  The entryport

control  is a notify port with a default buffer queue length of 1. The declaration, 

control : boolean  queue  8 ;  

would declare a buffer queue for 8 boolean values. The default buffer exhaustion strategy is to

overwrite the oldest buffer, reflecting the most common uses of the notify transaction which

are event signalling and status updating. [28] discusses the interprocess communication

primitives in more detail. Note that parameters, such as scalefactor in Fig. 2.1, can be passed

to a task instance at creation time to tailor it for a particular environment.   
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Conic provides no explicit support for sharing data between task modules. However,

within a logical node messages can contain pointer values. Consequently, a task can give direct

access to the data it encapsulates. Mutually exclusive access can be enforced using the message

passing primitives for synchronisation. In the respect that tasks exist in the same address space

within a logical node, Conic tasks are similar to the "lightweight" processes of the V-kernel [4]

and Amoeba [20]. 

B. Conic Configuration Language 

The Conic configuration language [5] is used to specify the configuration of tasks which

constitute a logical node.  A variant of the language is also used to specify to the dynamic

management system the configuration of logical nodes which constitute a distributed

application. 

The structure of tasks within a logical node is described as a hierarchy of group

modules. For example, Fig. 2.2 describes a group module composed of the two task types

scale (from Fig. 2.1) and sensor.  The use construct specifies the set of message types

necessary to declare a module interface (in this case null since the messages are of base types)

and the set of task and/or group module types.  Instances of task (or group) types are specified

by the create construct. In the example two instances of the task type sensor  (temperature and

pressure ) and two instances of the task type scale (Tscale and Pscale ) are specified. The link

construct declares the interconnections between  instance exitports and entryports. 

group module monitor(Tfactor,Pfactor:integer); 
exitport  

press, temp: real  reply  signaltype; 
entryport 

control:boolean; 
use 

scale; sensor;  
create 

temperature: sensor; 
pressure: sensor; 
Tscale: scale(Tfactor); 
Pscale: scale(Pfactor); 

link 
temperature.output to Tscale.input; 
pressure.output  to Pscale.input; 
Tscale.output  to  temp; 
Pscale.output to press; 
control  to  Tscale.control, Pscale.control; 

end. 
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Fig. 2.2 - Monitor group module 

It should be noted that the interface to a group module is identical to that of a task

module. When a group module type has been defined, it may be instantiated and connected in

exactly the same way as a task. Hence complex configurations can be built up by nesting

groups and tasks within groups to any required level. We have found the group module

abstraction to be a powerful way of structuring the tasks which constitute a logical node. 

Each group module specification is separately compiled into a symbol table and a

procedure which will instantiate its structure at node instantiation time. A group module type

which includes an instance of the run-time executive (itself a group module - see Section 4.)

can be compiled into an executable load file from which logical nodes are created. The

hierarchical structure of configuration specifications has no run-time overhead as it is flattened

into a uniform address space of task instances at the time a node is instantiated. 

III  DYNAMIC CONFIGURATION 

Distributed programs in Conic are constructed with the aid of the dynamic configuration

tools from sets of pre-compiled logical node types. A logical node may run either as a Unix

process or on a standalone target depending on the run-time support modules which are

configured into it. Like group modules, logical nodes are types in the sense that more than one

node instance may be created from the code file which represents the node type. Actual

parameters substituted at instantiation time control the numbers of tasks created within nodes

and the values passed to those tasks. 

To illustrate the program construction process in Conic, the following outlines the
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construction of a simple distributed application. The application supports the multi-screen

display of a moving text "snake".  The snake when it reaches the edge of one screen moves to

the beginning of the next.  Each screen supports one or more segments which are horizontal

paths along which the snake may move. Segments have a direction indicating whether the

snake moves from left to right or right to left across the screen. The diagram of Fig. 3.1

illustrates a three screen display into which two snakes have been injected.  Each screen has

two segments (top segment- left to right, bottom segment - right to left). These segments are

connected together to form a ring so that when a  snake  has been injected it continuously travels 

around the three screens. The snake in Fig. 3.1 has the string value "O____=". 

=_ __O

O____=

Screen1 Screen3Screen2

Fig. 3.1  - Multi-screen "snake" display 

Each segment may be in one of four states: a snake may be entering the segment, a snake

may be leaving the segment, a snake may be travelling across the segment or the segment may

be empty. Snakes are transferred between segments one character at a time. Analogous to trains

and sections of railway track, a segment may  only have one snake entering, leaving or resident

at any one time. While artificial, this example raises configuration issues which we have

encountered in "real" applications in the areas of flexible manufacturing and control systems.  It 

is felt that the exposition overhead of these real domains would obscure the issues of interest. 

A. Task Programming 

It is natural to implement the functionality of a segment as a task type in Conic so that a

display configuration can be constructed by interconnecting instantiations of this task type.

The segment task ( Fig. 3.2) takes two parameters, Ypos  which determines the horizontal

position of the segment on a VDU screen and direction  which determines the direction the

segment will move the snake across the screen (direction = 0   gives right to left and direction

= 1  gives left to right).  Snakes are prefixed by the ASCII character SOH  and terminated by

the character ETX.  Characters for a snake entering the segment are received from the entryport

input  and snakes leave the segment via the exitport output.. The definition module segdisplay

supplies procedures for initialising the segment display and displaying snake movement. The

function movesnake moves the snake one position each time it is invoked, accepting the next

input character as a parameter. It returns NULL characters until the snake reaches the segment
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boundary and then returns the characters which constitute the snake. 
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1 task module segment( Ypos,direction:integer); 
2 use 
3 ascii:soh,etx,nul; 
4 segdisplay: initseg, movesnake; 
5 entryport 
6 input: char  reply signaltype; 
7 exitport 
8 output:char  reply signaltype; 
9 var 
10 ch:char; 
11 state:(idle,entering,moving,leaving); 
12 begin 
13 initseg(Ypos,direction);  state:=idle; 
14 loop 
15 select 
16 when (state=idle)    receive ch  from input  reply signal  
17 => if ch=soh  then begin 
18 movesnake(soh); 
19 state:=entering; 
20 end ; 
21 or 
22 when (state=entering)   receive ch  from input  reply signal 
23 => movesnake(ch); 
24 if ch=etx  then state:=moving; 
25 or 
26 when (state=entering)   timeout 100 
27 => initseg(Ypos,direction); state:=idle; 
28 or 
29 when (state=moving) 
30 => if ch<>soh  then 
31 ch:=movesnake(nul) 
32 else 
33 send ch  to output 
34 wait signal => state:=leaving; 
35 fail => { retry }; 
36 end ; 
37 or 
38 when (state=leaving) 
39 => ch:=movesnake(nul); 
40 send ch  to output  
41 wait signal=>  if ch=etx  then state:=idle; 
42 fail => initseg(Ypos,direction); state:=idle; 
43 end ; 
44 end ; 
45 end ; 
46 end . 

Fig. 3.2  - Segment task 

The task program takes the form of a  guarded command which is repeatedly executed.

The arms of the guarded command are the actions performed for each of the states (idle,

entering, moving, leaving) which the segment can take.  To avoid fragmented snakes occurring

because of either communication failures or re-configuration the segment is re-initialised if a

failure occurs in the entering or leaving states (lines 26,27,42} 

The only other active component required for this example is a task to generate snakes.
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The task of Fig. 3.3 generates a snake when its enclosing node is started and subsequently

moves the node back into the stopped state. 

1 task module snakegen(snake:string); 
2 use 
3 ascii : SOH, ETX; 
4 strings :strlen; 
5 exitport 
6 out:char reply signaltype; 
7 var 
8 i : integer; 
9 begin 
11 while not  linked(out) do  delay(100); 
12 send SOH  to out  wait signal; 
13 for i := 1  to strlen (snake) 
14 send snake^[i]  to out  wait signal; 
15 send ETX  to out  wait signal; 
16 end . 

Fig. 3.3 - Snake generator task 

B. Group Modules and Logical Nodes 

As stated above, Conic distributed applications are constructed from logical node types.

Logical node types are constructed from task types  using the Conic Configuration Language.

The snake display example can be constructed from two logical node types: screen  - which

contains one or more instances of the segment task and generator  -  which contains one

instance of the snakegen task.  The configuration language descriptions and diagrammatic

representations for these logical nodes are depicted in Figs. 3.4 and 3.5. 
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group module screen(N:integer=2;  spacing:integer=8); 
use 

unixexec; 
create 

unixexec; 
entryport 

input [1..N] : char  reply signaltype; 
exitport 

output [1..N] : char  reply signaltype; 
use 

segment; 
create family k:[1..N] 

seg [k] : segment (ypos = k*spacing, direction = k  mod 2); 
link family k:[1..N] 

seg[k].output  to output[k]; 
input[k]  to seg[k].input; 

end . 

seg[1]

Screen

output[1]input[1]

seg[2] output[2]input[2]

seg[n] output[n]input[n]

Fig. 3.4 - Screen logical node 

In addition to application tasks, logical nodes contain the run-time support necessary for

the environment in which they are to execute. Both screen and generator are intended to run

under a Unix host operating system and consequently they include an instance of the group

module unixexec  which supports multi-tasking, message passing and dynamic configuration

operations in conjunction with Unix. The structure of run-time support is described in the next

section.  

The Conic Configuration language supports default parameter values. For screen, the

default number of segments is 2 and the default spacing between segments on the VDU display

is 8 lines. The create statement specifies a family of N segment instances with odd numbered

segments having the direction left to right and even segments having the direction right to left.

The default value of  N  can be overidden by passing a value to the node at creation time.  

It should be noted that the interface to a logical node is specified in exactly the same way

as the interfaces of group and task modules. The distinction between a group module
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implementing a logical node and any other group module is that the logical node includes a run-

time support executive (in this case  unixexec  ). 

group module generator(s:string="O______="); 
use 

unixexec; 
create 

unixexec; 
exitport 

output:char  reply signaltype; 
use 

snakegen; 
create 

snakegen(s); 
link 

snakegen.out to output; 
end . 

Generator

Snakegen output

Fig. 3.5 - Generator logical node 

The host compilation system produces an executable code file for each logical node type.

To simplify the compilation and subsequent maintenance of complex logical node types, the

Conic host system includes a makefile generator tool. This analyses group module

specifications to determine dependencies and generates the required input file for the Unix

make facility to build a logical node type from its constituent group module, task module and

definition unit sources. 

C. Managing an Application Configuration 

Conic distributed application programs are constructed from a set of pre-compiled logical

node types. Each logical node type is contained in an executable code file. To construct the

snake display example we have two logical node types, screen  and generator.  The display of

Fig. 3.1 could be configured to run on three VDU devices connected to one host or on three

windows on a single Sun workstation. In the following, we will describe how the display can

be mapped onto the hardware configuration of three Sun workstations depicted in Fig. 3.6 
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Sun1 Sun2 Sun3

Ethernet

Fig. 3.6 - Hardware configuration 

input[1]  output[1]

output[2]  input[2]

screen1

input[1]  output[1]

output[2]  input[2]

screen2

input[1]  output[1]

output[2]  input[2]

screen3

Gen output

Fig. 3.7 - Logical configuration 

The logical configuration shown diagrammatically in Fig. 3.7 is constructed by 

submitting the following set of configuration statements to a configuration manager. The 

commands may be typed interactively to an invocation of the manager ( iman ) or may be read 

from a file. The manager may be run in a window on one of the Suns or on a separate machine. 

Configuration statements:- 

manage snakedemo 

create screen1:screen  at sun1 
create screen2:screen  at sun2 
create screen3:screen  at sun3 
create gen:generator  at sun2 

link  screen1.output[1]  to screen2.input[1] 
link  screen2.output[1]  to screen3.input[1] 
link  screen3.output[1]  to screen3.input[2] 
link  screen3.output[2]  to screen2.input[2] 
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link  screen2.output[2]  to screen1.input[2] 
link  screen1.output[2]  to screen1.input[1] 

link  gen.output  to  screen2.input[2] 

The manage statement provides a name for the distributed application. A user may thus

control one or more distributed applications concurrently. Each time the configuration manager

is invoked, the user must specify the application he wishes to control. If omitted this name

defaults to the users Unix login name. 

The create statement creates the specified logical node type at a location. In this example

screen1 is created at sun1, screen2 and gen at sun2 and screen3 at sun3.   Each instance of the

screen logical node type has been created with its default parameters. A screen with four

segments and different spacing between segments could be created with the statement: 

create  bigscreen:screen(4,6)  at  sun1 

The language used to communicate with a configuration manager corresponds with the

configuration language used to construct group modules. As yet the configuration manager

does not implement the family construct supported by the group module compiler. This is

mitigated to some extent by the fact that configuration statements can be executed directly by

Unix csh as commands. The commands invoke the manager with their names as parameters in

the standard Unix fashion. Consequently, cunning sh macros can be defined to shorten the

text of configuration descriptions (such as the list of link statements above). 

Additional snakes can be injected into the system  by the commands: 
create gen2("O***=):generator  at sun2 
link  gen2.output  to  screen2.input[2] 

Generators terminate and dissappear as soon as they have completed injecting a snake. 
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An additional screen can be added to the right of the loop by the following set of configuration

statements: 
unlink screen3.output[1]  from screen3.input[2] 
create screen4:screen at sun3 
link screen3.output[1]  to screen4.input[1] 
link screen4.output[1]  to screen4.input[2] 
link screen4.output[2]  to screen3.input[2] 

As described in the next section, the above create will both instantiate screen4 and also create

an additional Sun window for  screen4  to run in. 

As well as  providing commands to control a configuration, the manager provides a set of

queries to let the user examine the state of his system: 

systems - lists the set of applications currently running. 

nodes - lists the set of nodes within a system. 

ports  <node> - lists a node's interface ports and types 

links  <node> - lists the entryports connected to a node's exitports. 

D.  Summary and Discussion 

This section has attempted to give a user's view of the Conic system. The functionality of

an application is implemented by task modules and definition units using the Conic

Programming Language. These tasks may be combined into groups to provide extra levels of

structuring using the Conic Configuration Language. The set of task and group types is then

partitioned into logical node types.  These logical node types form the unit of distribution.

When defining a logical node type the user must consider the environment in which the node is

to execute (host or target) and include the appropriate run-time support executive.  Compiling a

logical node type results in an executable code file. This compiled node type, although it is

constrained as to whether it may run on a host or target, is unrestricted as to its hardware

location and the particular logical configuration in which it will run. Furthermore, the number

of task instances  contained within a logical node can be specified by parameters at node

creation time.   

The initial construction and subsequent modification of an application is carried out using

a configuration manager which allows the user to create instances of logical nodes at specified

locations within his network. These instances are interconnected to form the logical application

configuration. 

Essentially, the Conic system has two constraints in the dynamic configuration flexibility

that it offers. Firstly, the set of task and group types from which a node type is constructed is

fixed at node compile time. The principal reason for this  is the simplification to the dynamic

configuration system which results from management at the node level. The internal structure
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of a node is essentially invisible to the configuration management system. A secondary reason

is that it is  nearly impossible under Unix to implement loading and linking of new code into a

running process in such a way that is portable across the different versions of Berkley Unix

and the different machine architectures supported by these versions. 

The second constraint is that the number of task and group instances within a node is

fixed at the time a node is created. Although the set of task types is fixed, additional instances

of these types could be created inside a node in response to application or configuration system

actions. This second constraint is largely as a result of  the historical development of the Conic

system and is less easy to justify. One of the original objectives of the Conic system was to

provide a strict separation between programming-in-the-small (provided by tasks and definition

units defined using the Conic Programming Language) and programming-in-the-large

(provided by group modules defined using the Conic Configuration Language).  It was felt that

providing primitives for task creation and inter-connection within the programming language

would lose this strict separation.  Currently, the Conic group is investigating ways of

providing dynamic tasking within a node, without completely losing the separation. The

distinction between programming and configuration is felt worth preserving since it results in

system structures which are easy to understand and in modules which can be used in many

different applications. 

The objections to static tasking outlined in [18] are largely overcome in CONIC through

the use of the  forward statement. This allows a server task to forward messages, the servicing 

of which may incur local or remote delays, to one of a pool of "worker" tasks. The forward

transfers the request message to a worker allowing the server to continue immediately and

enabling the worker to reply directly to the original sender of the request. However, the size of

the pool of worker tasks is fixed at node instantiation time. 

This section has concentrated on the structural aspects of constructing a distributed

application. We have largely ignored aspects of application consistency. For example,

segments make no effort to preserve snakes during re-configuration or to avoid deadlock when

accepting new snakes. The preservation of consistent system state during reconfiguration

requires synchronisation between the management system and the distributed application.

Recent work [ HK,DS] has outlined a protocol for performing this synchronisation which

preserves the configuration independence of modules. 

IV. RUN -TIME SUPPORT 

Conic applications are intended to run in a mixed host-target environment. Logical nodes

running on target machines must be able to communicate with nodes running under a host as a

process. This constrains the Conic run-time system to use a communications protocol offered

by the host operating system. Consequently, internode communication is implemented using

the Internet UDP/IP datagram protocol [16,23,6] offered by BSD4.3 and 2.9. However, to
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facilitate porting to different host operating systems, operating system dependencies are

restricted to a small number of modules in the run-time system. Access to operating system

functions by other parts of the run-time system is always carried out by sending messages to

these modules. Reports from a group of users who are porting Conic to  a VAX/VMS host

environment indicate that this has proved reasonably successful.  

The execution environment on which our development system runs at Imperial College

consists of VAXs, Sun Workstations and some aging PDP11s running various versions of

Berkeley UNIX and interconnected by Ethernet (see Fig. 1). Users may develop software on

any of the machines and run it on some (or all)  of these host computers. In addition, target

68000 and LSI11/73 computers (also connected to Ethernet) are available for applications

which require real-time response.  Typically these targets are used for controlling real-time

control experiments. The compilation system supports cross-compilation from the Suns and

VAXs to PDP11 targets. Although possible, to date there has been no requirement for cross-

compilation between VAXs and 68000s.  This environment means that the software for a

particular application may be developed on a number of host machines, executed on both these

and additional host and target machines, and managed from a different machine. The Conic

support environment must thus allow the distributed development of applications as well as

their distributed execution and management in this heterogeneous hardware environment. 

In the following, both the structure of the run-time environment and the rationale behind

its design are outlined. 

A. Configuration Management 

Our initial conception of dynamic configuration management [14] involved what was

essentially an on-line database which recorded the current configuration state. It was intended

that a dynamic configuration manager would use this database to retrieve information on the

current application configuration in order to perform changes. The dynamic manager would

both change the system and update the configuration database. The database was intended to

"mirror" the system providing translations from symbolic names to actual addresses. The

database would ensure that only consistent and validated changes could be performed. One

motivation for this design was that translation information need not be stored in target nodes

which have no backing store and may have limited main store. This translation information

would have been significant since we intended to manage systems at all levels down to the level 

of a task module.  

The design outlined above had a number of significant problems, primarily concerned

with the implementation of the database. To achieve a distributed and robust management

system, it would have required a distributed database implementation with the attendant

problems of maintaining replicated data and performing consistent atomic updates. While

solutions exist to these problems and a distributed database could have been constructed we felt
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that this design was overly complex. The database would constrain the speed with which

changes could be performed. This speed is particularly important when re-configuration is

required as a result of failure.  Consequently, we abandoned this design and the current

implementation results from two fundamental decisions.  

Firstly, it was decided that the user's requirement for dynamic configuration could be

satisfied by management  at the level of logical nodes. Essentially, the logical node became

both the unit of configuration management and the smallest unit of failure. This decision

dramatically reduces the quantity of information which must be handled by the management

system. In the systems we have constructed to date, the configuration of tasks within a node is

more complex than the configuration of nodes which combine to form an application.  Nodes

typically have 10 to 100 constituent task instances, including the executive. 

Secondly, rather than have a separate configuration database, it was decided that a

running application would be its own database. Each logical node would contain enough

information to describe its own interface and its links to other nodes. The quantity of this

information is small enough, as a result of the previous decision, to hold in main memory. A

configuration manager obtains information on an application by querying a name server to find

the set of logical nodes which constitute the application. Information concerning the node itself

is obtained by communicating directly with the node. 

Node Interface 

In addition to its application defined interface, each compiled logical node type has a set

of  ports which provide the management interface to instances of the node (Fig. 4.1). This

standard interface is implemented by the node's executive: unixexec for nodes which run as

UNIX processes, and  targexec  for nodes destined for targets. 

node 
executive

status

connect

links

ports

control

Application
modules Standard

node
interface
ports

Fig. 4.1 - Node standard interface ports 
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The services provided by the node's management interface entryports are as shown in

Fig. 4.1, and are as follows: ports  returns a description of the node's interface in terms of the

names and types of its ports;  links  returns the set of connections or links from the node's

exitports to external entryports; control changes the configuration state of the node (started,

stopped) in response to requests; connect links or unlinks node exitports to external entryports

in response to requests.  The exitport status is linked at node startup time to the name server as

shown in Fig. 4.2. 

Name Server 

The name server has the only "well-known" or fixed UDP/IP address in the system.

When a node is instantiated it obtains the address of the server from a UNIX  environment

variable and links its exitport status to the server entryport statusport. The node registers

itself with the server by sending a message containing its system name, node instance name,

node type name, UDP/IP address and its configuration state.  

server
statusport

requestport

status

Logical Nodes

iman

Fig. 4.2  - Configuration name server 

The server is a central point of failure in the configuration management system since it is

the only place that configuration managers can find the addresses of logical nodes. To

overcome this reliability problem, nodes send registration messages to the server at regular ten

second intervals in addition to informing the server of a change of configuration state. If the

server crashes and is subsequently restarted, it can recover its full database on the set of logical

nodes within 10 to 20 seconds. Further, provision is made for replicating the server by
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allowing nodes to link to one or more instances of the server node on startup. Registration

messages are then sent periodically to each server to which the node is linked. The robustness

of the configuration management system is thus a function of  the communication overhead that

a user is willing to pay. 

As with the rest of the management system, the name server is implemented entirely in

Conic as a logical node type and may consequently run on a host or target computer depending

on the node executive included. 

Configuration Manager (  iman  ) 

The logical node type iman provides the user interface to configuration management. It

may be invoked directly as a UNIX command to provide an interactive command interface or it

may be invoked by command files as described in the previous section. When invoked, the

manager iman links to the server as shown in Fig. 4.2 and obtains the names and addresses of

all the nodes running in a particular application system which, by  default, is the user's UNIX

login name. The system to be managed can be changed using the manage command as

described in the previous section.  The manager performs configuration actions on a node by

linking its exitports to the management entryports of the node and invoking the management

services provided by the node's executive. Since the Conic message passing primitives do not

guarantee reliable delivery, the protocols used to invoke management actions on a node are

designed to be idempotent. 

There is no restriction on the number of instances of  iman which may be active managing 

a particular system. Consequently, it is currently possible for a manager to perform incorrect

operations based on an inconsistent view of the system it is managing. We are investigating the

implementation of a robust locking mechanism which would survive server crashes and

prevent managers from destructive interference when modifying the system. The problem is

similar to file access locks required for multiple readers - one writer, but is simpler in that we

do not actually require changes (writes) to be transparent. 

Virtual Target  (  vt   ) 

Logical nodes may be instantiated either by executing them directly as UNIX commands

or by using the create statement supported by the iman interface. The command format for

the first method is: 

<node type name> [<parameters>]  -  [ <node instance name> [<system name>]] 

For example, the name server is created with the command: 

server -  conicserver conic 
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which creates an instance of the node server named conicserver in the system conic. As

mentioned before, the system name defaults to the user's login name and in addition, the

instance name defaults to the UNIX process number. This method is appropriate for creation

on the user's local host; however, it does not support creation at either remote hosts or targets.  

Remote creation on hosts is performed by a manager with the agency of a virtual target

node running at the remote site. The virtual target is in effect a UNIX  "shell" with a message

passing interface. For example, a user wishing to create a logical node at the Sun Workstation

of Fig. 4.3 from a manager running on the VAX would type the commands: 

manage  snakedemo 

create  newscreen:screen  at  sun1 

The manager locates the virtual target node sun1  by  communicating with the name

server, links to it, and sends a message containing the string: 

"screen - newscreen snakedemo". 

The virtual target  sun1   then executes this command in the usual UNIX way (fork & exec). 

VAX Sun Workstation

iman sun1:vt

Fig. 4.3  - Remote creation 

The advantage of implementing remote creation using this technique is the ease with which

Conic applications can use host operating system resources. For example, suppose we wish

the virtual target to create a Sun Window for each node it instantiates.  In this case, the virtual

target is created on the Sun with the command: 

vt shelltool  - sun1 snakedemo 

The virtual target is designed to prefix commands from managers with its own arguments.

Consequently, from the previous example,  sun1  will execute the command: 

shelltool screen  - newscreen snakedemo 

Shelltool is the Sun workstation command which creates new windows. In the same way,

virtual targets running on a host support creation at real targets by invoking a download

command (e.g. vt download target1- target1,  provides access to the real target named target1).

Currently, the code for a logical node type is assumed to be locally accessible to the virtual

target. However,  virtual targets can be given a UNIX sh macro as an argument. This macro
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would copy the code from a remote location using  rcp  and then execute it. 

B. Node Executive 

The structure of the runtime executiveincluded in each logical node is the same for target

executives as for host executives. This generic structure of a node executive is depicted in Fig.

4.4. However, the implementation of some modules differs depending on whether they are

used in the host executive unixexec or the target executive targexec.  The functionality of each

module and the differences between their host and target implementations are outlined in the

following. 

The kernel supports multi-tasking and inter-task communication within a node. It is

implemented in Conic as a task module and is treated as such for configuration purposes.

However, unlike normal task modules, it is not scheduled but executes in response to kernel

calls from other task modules. A small amount of assembly code is required to provide task

context switching. The host kernel provides facilities to handle UNIX signals whereas the

target kernel supports real interrupt handling. Apart from this difference and a difference in the

details of kernel entry, the host and target kernels are the same. 

Messages destined for remote nodes are passed by the kernel to the Communication

Manager.  Under UNIX this module merely frames the message with a Conic inter-task

communication header and passes it to the UNIX networking software via socket system calls.

The target communications manager implements the full UDP/IP Internet protocol to frame

messages and the Address Resolution Protocol (ARP) [22] to translate Internet addresses to

Ethernet addresses. The particular Ethernet driver included in the target manager depends on

the details of target hardware. A more detailed description of Conic communications may be

found in [27]. 
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control
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Fig. 4.4 - Generic node executive 

The FiIe Manager handles user task requests for both file and console I/O. Under

UNIX, this manager either performs the appropriate system call or passes the request to the

console module.  The console module is necessary under UNIX to make the synchronous I/O

calls appear asynchronous for other tasks running within the UNIX process (otherwise a read

call from one task would suspend all tasks waiting for the read to complete). On a target, the

file manager either forwards file requests to a node running on the host or passes them to the

console module, which in this case is a real device driver.  

The Error Manager is the same module on both host and target. It is usually configured

to display error messages on the local console, but it may optionally produce a file containing

the state of a task's variables at the time the error occurred. A tool is available to display the

contents of this file symbolically.  

Again, the Link and Node Manager modules are the same for both host and target.

They implement the management interface described in section 4.1. Finally, the Time Manager

module handles the targets real time clock interrupt or the UNIX ALARM signal to provide

real-time within the node. 

Both unixexec and targexec represent a commonly used executive configuration.

However, users are at liberty to configure their own version of the executive. They may do this

using the standard modules or their own implementations of these functions. The executive is

tailored to different target hardware configurations by including different versions of the device

driver modules. 

The table of Fig. 4.5 gives an idea of the performance of inter-task communication on the

range of host computers currently supported by Conic. The times in milliseconds are for a
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request-reply cycle transferring a 20 byte request message from sender to receiver and a 1 byte

reply message. 

Inter-node  Inter-node                  
Intra-node  (intra-host)  (inter-host) 

Sun 3/160 0.6ms 8.8ms 10.9ms 

VAX 11/750 1.5ms 45ms 66ms 

PDP 11/44 0.73ms 49ms 53ms 

Sun - PDP ••• ••• 37ms 

Sun - VAX ••• ••• 49ms 

PDP - VAX ••• ••• 55ms 

MVME133/1 0.57ms ••• 5.2ms 
(16.67 MHz 68020 target) 

Sun3 - 133    ••• ••• 7.5ms 

Fig. 4.5 - Inter-task communication performance 

The figures were obtained when both the machines and the inerconnecting Ethernet were

lightly loaded. 

C.  Support for Heterogeneous Machines 

As previously mentioned, logical node types can be compiled and run on computers

based on the 68000, VAX or PDP11 architectures. This is possible since both the group and

task module compilers are based on the Amsterdam Compiler Kit (ACK) [32]. ACK makes use 

of an intermediate code (EM) to allow compilers to generate code for more than one target

architecture.  

To allow logical nodes running on different processor types to communicate, messages

between nodes must be transformed to conform to the way data is represented on the

destination machine. There are fundamentally two techniques for doing this. Firstly, messages

can be transformed to a common data representation before being sent to the network. The

destination machine then transforms the message to its local data representation. This technique

is followed by the Sun RPC facility which uses XDR[31] as the common data representation.

The disadvantage of this technique is that it requires two message transformations even when

the machines communicating are of the same type. The advantage is that in an open network

environment, each machine need only know how to transform between the common

representation and its local representation. The addition of new machine types is thereby

facilitated. 
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The second technique involves transformation only at the destination machine if required.

A machine sends the message as a byte string in its local data representation together with a

descriptor which identifies the source machine type and describes how the message is

constructed from base types. The destination machine uses this descriptor to transform (if

necessary) the message to its local data representation. The advantage of this technique is that it

enhances communication performance by avoiding unnecessary data transformations. The

disadvantage is that a machine must know how to transform all source representations into its

local representation.  

We have chosen the second technique in Conic for the following reasons. Most

importantly, we wish to avoid any performance overhead in communication between

homogeneous machines. Additionally, the technique fits well into the Conic environment since

communication is always between typed exit and entry ports. Consequently, the message

descriptor can be associated with the ports avoiding the overhead (although small) of

transmitting it. Existing node types can easily be re-compiled to accommodate the (usually

simple) additional transformation algorithm. Finally, the number of machine types supported

by the Conic system is small.  

Consequently, when the group module compiler produces a logical node type it

associates type descriptors with each node interface port. These descriptors describe how the

message type is constructed from the base types of the Conic language. An example of a

descriptor is given below: 

type message =  record 
str: packed array [1..100]  of char; 
i, j , k : integer; 
long : longint; 
reading : real; 

end ; 

descriptor ::      100Ciiilr        {C=packed character, i= integer,l= long integer 
and r= real} 

The only additional information sent in a message is a tag identifying the source machine

type. 

Entry and exitports as described in section 2 may have both a request and a reply message 

type. For data transformation purposes it is only necessary to record the type descriptor for the

entryports request type and the exitports reply type since transformation is always done at the

destination. However, we record the request and reply descriptors at both  entry and exit port

ends of a link. The reason is to allow the configuration manager to perform type checking

before setting up a link. The type descriptor is part of the interface description returned by the

node's executive. Consequently, before a link is set up the manager checks that the exitport's

type names and descriptors match exactly the entryport's type names and descriptors.  

This is a weaker form of type checking than that performed by the group module
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compiler which checks that linked ports are using exactly the same version of a compiled type.

This weakened form of type checking at the node level permits the independent (rather than

separate) compilation of nodes which can later be configured safely into the same distributed

application system. It avoids the problems of having to distribute symbol tables representing

compiled types between machines of different types. The requirement for users on all machines

to have access to the same versions of compiled types would make distributed development of

systems difficult in our distributed environment. 

D . Discussion 

This section has described how the dynamic configuration facilities used in the previous

section are provided. A management system may be easily tailored to a user's environment by

the appropriate creation of instances of the three node types - server, iman and vt which

together implement dynamic configuration management. When available, existing operating

system resources and facilities can be simply accessed by virtual targets. New target hardware

configurations can be accomodated by creating  new versions of the target executive from

existing modules and new device driver modules. In summary, the construction of the dynamic

configuration support environment using Conic has the advantage of providing itself with the

flexibility it provides for  applications.  Configuration actions are all supported by requesting

actions on entryports. Consequently, applications may themselves request configuration

changes when desired, for instance to recover from failures. 

While giving much more flexibility than the original database approach to providing

configuration management, this implementation can result in erroneous configuration actions as

a result of more than one manager performing reconfiguration operations on the system at the

same time (as described in section 4.1.) Our current research is investigating the provision of

configuration transactions which would  ensure consistent changes to the configuration.  

Observant readers will have noted that a virtual target gives anyone access, through a

configuration manager, to the files and programs it can access. This lack of security is inherent

in the Berkeley networking software since anyone who knows the address of a socket may

send a message to it. Unlike Amoeba [20] which encrypts port addresses, socket addresses are

not protected in any way and may be easily forged. Conic  currently makes it easy to exploit

this insecurity! 

Related to security, is the concept of a management domain [28]. The configuration

system currently manages systems which are disjoint sets of logical nodes. We do not support

the interconnection of nodes in different systems. A more complex view, applicable to very

large systems, would be the division of a system into management domains each containing a

set of nodes which potentially could inter-communicate. Responsibility for managing different

parts of the system would reside with different users. Authorisation to change a part of the

system could be checked before allowing a user to manage that part of the system. This
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would go some way to alleviating the security problem outlined above. The HPC proposal [15]

outlines a similar approach to Conic in the area of management and specifies a number of

possible operations for manipulating domains and process hierarchies. However, as yet no

implementation has been reported in the literature. 

To date, we have constructed applications consisting of tens of logical nodes. The

constraint on system size is largely a function of the servers capacity. It is likely that to

accommodate systems with hundreds of nodes, we will have to partition the server function

into a number of logical nodes and exploit locality to reduce the communication overhead as is

done in the Clearinghouse nameserver [21]. 
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V.  CONCLUSIONS 

An earlier version of the Conic environment, with static configuration, has been used for

a number of years at Imperial College, by research groups at other universities and in industry.

We have used the environment as the basis for further research, for substantial student research

projects and for student exercises on concurrency and communication protocols. The industrial

users include British Coal for the implementation of underground monitoring and

communication  in coal mines; British Petroleum for research into reconfigurable control

systems and GEC for the development of an object-oriented support system and front-end

security processor. Conic has also been used for a number of years at the University of Sussex

for research on self-tuning adaptive controllers [7]. The Conic system has been supplied to

universities in Canada, France, Japan, Korea and  Sweden. 

It is gratifying that all our users have found the concepts embodied in Conic, and the

facilities provided by its support environment, to be easy to assimilate and use. They are

particularly enthusiastic about the use of the configuration language to describe and construct

their systems and about dynamic configuration using logical nodes. The functionality

provided seems to be more than adequate to support the flexibility required in distributed

systems (as opposed to programs).  

The separation of programming from configuration has enabled us to maintain the

knowledge of the configuration structure and status necessary to make unpredicted

configuration changes. 

< need something here about new work , note ref [12] has dissappeared > 

The selection of  simple  and efficient  primitives for Conic have provided a sound basis 

for the implementation of experimental distributed systems. Where functionality was sacrificed

for simplicity and/or efficiency, more complex operations can generally be provided at a higher

level.  For example we have provided transactions by extending the standard facilities provided

by the executive [2] rather than as base primitives as in Argus [17]. We have also experimented

with the use of passive module redundancy and the reconfiguration facilities to provide fault-

tolerance in a transparent manner [19]. 

Support for mixed hosts / targets has provided an extremely versatile environment.

The fact that operational distributed targets can communicate with Conic logical nodes running

under Unix has obviated the development of standard facilities such as a file system or printer

spooler. It has allowed us to keep targets simple as the complex components of the Conic

support environment can run on the host computers. In addition, the ability to test distributed

systems on a Unix host prior to down-line loading to a distributed architecture, has speeded up

the development process in many cases. 

The uniformity provided by the use of Conic itself for implementation of the support

environment, has proved useful in tailoring the facilities provided. For example the
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communication system can be configured to include a connection service,  routing over

interconnected subnets or drivers for different LANs. In addition, the accessibility of the

system facilities ("open architecture") has even permitted users to adapt and modify the

executive to support their requirements.  For example, in their development of a run-time

environment for an object-oriented system, GEC Research have modified some of the Conic

intertask communication primitives and introduced support for manipulating capabilities [25]. 

As explained, the environment supports allocation flexibility and provides the

necessary  transformations (portability) for a restricted set of non-homogeneous computers.

Structuring the executive as Conic modules has meant that the standard Conic configuration

tools can be used to build the run-time system for the variety of hosts and targets.  It would

have been difficult to maintain and support this variety of machines any other way. However,

the environment currently supports only a single programming language.  This has the

advantage that the compiler can check message type compatibility between messages and ports

and that port interconnections can be validated for type compatibility at configuration time.

Therefore no run time checks are needed. Furthermore, the transformations required for

transferring messages between heterogeneous computers are comparatively simple as the

compiler generates similar data structure representations in different  target computers. Some

current work, based on that of Matchmaker [11] and MLP [8] is aimed at supporting additional

module programming languages. The Conic configuration facilities will provide the basis of

integrating diverse language components with those implemented in Conic. 

< this next needs to change> 

Our future work is mainly centred on investigating the expressive power of configuration

languages and support for dynamic configuration. We propose to investigate the use of

guarded configurations to cater for conditional situations and recursion, and to examine the use

of configuration constraints, properties which should be preserved across configuration

changes. We also intend to continue to use Conic and the basis for more general distributed

system research such as software heterogeneity, distributed algorithms, fault tolerance and

security in management domains. 

As can be seen from the above description, Conic provides a flexible and sound

environment for the implementation of experimental distributed systems, both to ourselves and

our various users. Conic has benefitted from user experience and we intend to continue this

fruitful partnership.  
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